Linear Circuit Analysis
1. Introduction
2. Basic Concepts
- Currents and voltages
- Linear circuits
- Linear components
- Loops and nodes
- Series and parallel
- R, L & C combinations
- V & I combinations
- Power and energy
3. Simple Circuits
- Ohm's law
- Kirchhoff's current law
- Kirchhoff's voltage law
- Single loop circuits
- Single node-pair circuits
- Voltage division
- Current division
4. Nodal and Mesh Analysis
5. Additional Analysis Techniques
- Superposition
- Source transformation
- The $V_{test}/I_{test}$ method
- Norton equivalent
- Thévenin equivalent
- Max power transfer
6. AC Analysis
7. Magnetically Coupled Circuits
8. Operational Amplifiers
9. Laplace Transforms
10. Time-Dependent Circuits
- Introduction
- First-order transients
- Nodal analysis
- Mesh analysis
- Laplace transforms
- Additional techniques
11. Two-port networks
Appendix
Two-port parameter conversion formulas
Table 1 gives the coversion formulas between the 4 two-port networks presented in this chapter. $\Delta_Y$, $\Delta_Z$, $\Delta_H$, and $\Delta_T$ refer to determinants of the $Y$, $Z$, $H$ and transmittance parameters matrices (e.g. $\Delta_Y=y_{11}y_{22}-y_{12}y_{21}$, ...).
Y | Z | H | T | |
---|---|---|---|---|
Y | $\begin{bmatrix}y_{11} & y_{12}\\y_{21} & {y_{22}}\end{bmatrix}$ | $\frac{1}{\Delta_Z}\times \begin{bmatrix}z_{22} & -z_{12}\\-z_{21} & z_{11}\end{bmatrix}$ | $\frac{1}{h_{11}}\times \begin{bmatrix}1 & -h_{12}\\h_{21} & \Delta_H\end{bmatrix}$ | $\frac{1}{B}\times \begin{bmatrix}D & -\Delta_T\\-1 & A\end{bmatrix}$ |
Z | $\frac{1}{\Delta_Z}\times \begin{bmatrix}y_{22} & -y_{12}\\-y_{21} & y_{11}\end{bmatrix}$ | $\begin{bmatrix}z_{11} & z_{12}\\z_{21} & {z_{22}}\end{bmatrix}$ | $\frac{1}{h_{22}}\times \begin{bmatrix}\Delta_H & h_{12}\\-h_{21} & 1\end{bmatrix}$ | $\frac{1}{C}\times \begin{bmatrix}A & \Delta_T\\1 & D\end{bmatrix}$ |
H | $\frac{1}{y_{11}}\times \begin{bmatrix}1 & -y_{12}\\y_{21} & \Delta_Y\end{bmatrix}$ | $\frac{1}{z_{22}}\times \begin{bmatrix}\Delta_Z & z_{12}\\-z_{21} & 1\end{bmatrix}$ | $\begin{bmatrix}h_{11} & h_{12}\\h_{21} & {h_{22}}\end{bmatrix}$ | $\frac{1}{D}\times \begin{bmatrix}B & \Delta_T\\-1 & C\end{bmatrix}$ |
T | $\frac{1}{y_{21}}\times \begin{bmatrix}-y_{22} & -1\\-\Delta_Y & -y_{11}\end{bmatrix}$ | $\frac{1}{z_{21}}\times \begin{bmatrix}z_{11} & \Delta_Z\\1 & z_{22}\end{bmatrix}$ | $\frac{1}{h_{21}}\times \begin{bmatrix}-\Delta_H & -h_{11}\\-h_{22} & -1\end{bmatrix}$ | $\begin{bmatrix}A & B\\C &D\end{bmatrix}$ |
How to convert from one set of parameters to another
To convert from the set of parameters to another, we first write the current-voltage characteristics of the network in the first set and define the variable of the second set as new unknowns. Then, we solve the system of two equtions in the new unknowns.
For instance, assume we know the y-parameters of a nework and want to find the h-parameters. First we write the current-voltage characteristics of the network using the y-parameters $$\begin{equation}I_1=y_{11}{\color{red}V_1} + y_{12}V_2\end{equation}$$ $$\begin{equation}{\color{red}I_2}=y_{21}{\color{red}V_1} + y_{22}V_2\end{equation}$$ Then, since we want compute the values of the h-parameters, we need to solve the above system of equations for ${\color{red}V_1}$ and ${\color{red}I_2}$. We obtain $$\begin{equation}{\color{red}V_1}=\frac{I_1}{y_{11}} -\frac{y_{12}}{y_{11}}V_2\end{equation}$$ $$\begin{equation}{\color{red}I_2}=\frac{y_{21}}{y_{11}}I_1 + (y_{22}-\frac{y_{12}y_{21}}{y_{11}})V_2\end{equation}$$ which can be written as $$\begin{equation}\begin{bmatrix}{\color{red}V_1}\\{\color{red}I_2}\end{bmatrix} = \begin{bmatrix}\frac{1}{y_{11}} & -\frac{y_{12}}{y_{11}}\\\frac{y_{21}}{y_{11}} & \frac{y_{22}y_{11}-y_{12}y_{21}}{y_{11}}\end{bmatrix} \begin{bmatrix}I_1\\V_2\end{bmatrix}\end{equation}$$ The $2\times 2$ matrix in the right hand side of the last equation, can be identified as the matrix of hybrid parameters (see also Table 1).
Sample Solved Problems
-
The level of difficulty is given by the number of missing values that the user needs to input.
Convert from y-parameters (sparcity=4)
Convert from y-parameters (sparcity=8)
Convert from y-parameters (sparcity=12)
Convert from y-parameters (all)
Sample Solved Problems
-
Convert between different types of two-port parameters (numerically)
Convert from y-parameters (all)
Convert from y-parameters (all)
Convert from y-parameters (all)
Convert from y-parameters (all)
Convert from y-parameters (all)
Convert from y-parameters (all)
-
Convert from specific parameter type (numerically)
Convert from y-parameters (sparcity=8)
Convert from y-parameters (sparcity=8)
Convert from y-parameters (sparcity=8)
Convert from y-parameters (sparcity=8)
Convert from y-parameters (sparcity=8)
Convert from y-parameters (sparcity=8)
-
Convert from random parameter type (numerically)
Convert from y-parameters (sparcity=4)
Convert from y-parameters (sparcity=8)
Convert from y-parameters (sparcity=12)
Convert from y-parameters (all)