Linear Circuit Analysis
1. Introduction
2. Basic Concepts
- Currents and voltages
- Linear circuits
- Linear components
- Loops and nodes
- Series and parallel
- R, L & C combinations
- V & I combinations
- Power and energy
3. Simple Circuits
- Ohm's law
- Kirchhoff's current law
- Kirchhoff's voltage law
- Single loop circuits
- Single node-pair circuits
- Voltage division
- Current division
4. Nodal and Mesh Analysis
5. Additional Analysis Techniques
- Superposition
- Source transformation
- The $V_{test}/I_{test}$ method
- Norton equivalent
- Thévenin equivalent
- Max power transfer
6. AC Analysis
7. Magnetically Coupled Circuits
8. Operational Amplifiers
9. Laplace Transforms
10. Time-Dependent Circuits
- Introduction
- First-order transients
- Nodal analysis
- Mesh analysis
- Laplace transforms
- Additional techniques
11. Two-port networks
Appendix
The Laplace Transform
The Laplace transform of a function $f(t)$ is defined as $$\begin{equation}ℒ\left[f(t)\right]=F(\textcolor{blue}{s})=\int_{0}^{\infty}f(t)e^{-\textcolor{blue}{s} t} dt\end{equation}$$ where $\textcolor{blue}{s}$ is the complex frequency and function $f(t)$ is assumed to be defined for $t\geq 0$. The Laplace transform is linear $$\begin{equation}ℒ\left[f(t)\right]=F(\textcolor{blue}{s})\int_{0}^{\infty}f(t)e^{-\textcolor{blue}{s} t} dt\end{equation}$$ and has the uniqueness property that for any $f(t)$ there is a unique $F(\textcolor{blue}{s})$.
The Laplace transform can be used to solve integro-differential equations such as the ones that appear in electric circuit analysis. The Laplace transform reduces a linear differential, integral, or integro-differential equation to an algebraic equation, which can then be solved using standard algebraic methods. Finally, the solution of the original equation can found by applying the inverse Laplace transform to the algebraic equation.
Common Laplace transforms
$f(t)$ | $F(\textcolor{blue}{s})=ℒ\left[f(t)\right]$ |
---|---|
$1$ | $\dfrac{1}{\textcolor{blue}{s}}$ |
$e^{-at}$ | $\dfrac{1}{\textcolor{blue}{s}+a}$ |
$t^n $ | $\dfrac{n!}{\textcolor{blue}{s}^{n+1}}$ |
$t^n e^{-at}$ | $\dfrac{n!}{(\textcolor{blue}{s}+a)^{n+1}}$ |
$\cos(\omega t)$ | $\dfrac{s}{\textcolor{blue}{s}^2+\omega^2}$ |
$\sin(\omega t)$ | $\dfrac{\omega}{\textcolor{blue}{s}^2+\omega^2}$ |
$\cos(\omega t+\varphi)$ | $\dfrac{\textcolor{blue}{s} \cos\varphi-\omega \sin\varphi}{\textcolor{blue}{s}^2+\omega^2}$ |
$\sin(\omega t+\varphi)$ | $\dfrac{\textcolor{blue}{s} \sin\varphi+\omega \cos\varphi}{\textcolor{blue}{s}^2+\omega^2}$> |
$e^{-at}\cos(\omega t)$ | $\dfrac{\textcolor{blue}{s}+a}{(\textcolor{blue}{s}+a)^2+\omega^2}$ |
$e^{-at}\sin(\omega t)$ | $\dfrac{\omega}{(\textcolor{blue}{s}+a)^2+\omega^2}$ |
$e^{-at}\cos(\omega t+\varphi)$ | $\dfrac{(\textcolor{blue}{s}+a) \cos\varphi-\omega \sin\varphi}{(\textcolor{blue}{s}+a)^2+\omega^2}$ |
$e^{-at}\sin(\omega t+\varphi)$ | $\dfrac{(\textcolor{blue}{s}+a) \sin\varphi+\omega \cos\varphi}{(\textcolor{blue}{s}+a)^2+\omega^2}$ |
Laplace transforms of integrals and derivatives
$f(t)$ | $F(\textcolor{blue}{s})=ℒ\left[f(t)\right]$ | |
---|---|---|
Differentiation | $\dfrac{df(t)}{dt}$ | $s F(\textcolor{blue}{s}) - f(0)$ |
Differentiation (n-times) | $\dfrac{d^n f(t)}{dt^n}$ | $\textcolor{blue}{s}^n F(s) - \textcolor{blue}{s}^{n-1}f(0) - \textcolor{blue}{s}^{n-2}\dfrac{df}{dt}(0) -...-s^0 \dfrac{d^{n-1}f}{dt^{n-1}}(0)$ |
Integration | $\int_{0}^{t} f(\tau) \,d\tau$ | $\dfrac{F(\textcolor{blue}{s})}{\textcolor{blue}{s}}$ |
Convolution | $\int_{0}^{t} f_1(\tau)f_2(t-\tau) \,d\tau$ | $F_1(\textcolor{blue}{s})F_2(\textcolor{blue}{s})$> |
Properties of Laplace transform
$f(t)$ | $F(\textcolor{blue}{s})=ℒ\left[f(t)\right]$ | |
---|---|---|
Addition/subtraction | $f_1(t) \pm f_2(t)$ | $F_1(\textcolor{blue}{s}) \pm F_2(s)$ |
Linearity | $C_1 f_1(t) \pm C_2 f_2(t)$ | $C_1 F_1(\textcolor{blue}{s}) \pm C_2 F_2(\textcolor{blue}{s})$ |
Time scaling | $f(c t)$ | $\dfrac{1}{c} F\left(\dfrac{\textcolor{blue}{s}}{c}\right)$ |
Time shifting | $f(t) u (t-t_0)$ | $e^{-t_0 \textcolor{blue}{s}} ℒ(f(t+t_0))$ |
Frequency shifting | $e^{-a t} f(t)$ | $F(\textcolor{blue}{s}+a)$ |
Multiplication by $t$ | $t f(t)$ | $-\dfrac{dF(\textcolor{blue}{s})}{ds}$ |
Multiplication by $t^n$ | $t^n f(t)$ | $(-1)^n \dfrac{d^nF}{d@s^n}$ |
Division by $t$ | $\dfrac{f(t)}{t}$ | $\int_{0}^{\infty} F(x) \,dx$ |
Sample Solved Problems
-
Laplace transforms
Laplace transform of the delta distribution
Laplace transform of the step function
Laplace transform of the combination of delta distribution and step function
Laplace transform of the power function
Laplace transform of the exponential function
Laplace transform of the combine power and exponential functions
Laplace transform of the cos
Laplace transform of the sin
Laplace transform of the combined cos and sin functions
Laplace transform of the cos, with phase angle
Laplace transform of the sin, with phase angle
Laplace transform of the combined cos and sin functions, with phase angle
Laplace transform of the combined cos and exponential functions
Laplace transform of the combined sin and exponential functions
Laplace transform of the combined cos and exponential functions, with phase angle
Laplace transform of the combined sin and exponential functions, with phase angle