Linear Circuit Analysis
1. Introduction
2. Basic Concepts
- Currents and voltages
- Linear circuits
- Linear components
- Loops and nodes
- Series and parallel
- R, L & C combinations
- V & I combinations
- Power and energy
3. Simple Circuits
- Ohm's law
- Kirchhoff's current law
- Kirchhoff's voltage law
- Single loop circuits
- Single node-pair circuits
- Voltage division
- Current division
4. Nodal and Mesh Analysis
5. Additional Analysis Techniques
- Superposition
- Source transformation
- The $V_{test}/I_{test}$ method
- Norton equivalent
- Thévenin equivalent
- Max power transfer
6. AC Analysis
7. Operational Amplifiers
8. Laplace Transforms
9. Time-Dependent Circuits
- Introduction
- First-order transients
- Nodal analysis
- Mesh analysis
- Laplace transforms
- Additional techniques
10. Two-port networks
The Inverse Laplace Transform
The inverse Laplace transform is defined as $$\begin{equation}ℒ^{-1}\left[F(s)\right]=\frac{1}{2\pi j}\int_{\sigma_1-j\infty}^{\sigma_1+j\infty}F(s)e^{st} ds\end{equation}$$
Although it is possible to apply the above formula to compute the $ℒ^{-1}\left[F(s)\right]$, in electric circuits we usually compute the inverse Laplace transform using the method of partial fraction decomposition.
Properties of inverse Laplace transform
$F(s)$ | ||
---|---|---|
Addition/subtraction | $F_1(\textcolor{blue}{s}) \pm F_2(s)$ | $f_1(t) \pm f_2(t)$ |
Linearity | $C_1 F_1(\textcolor{blue}{s}) \pm C_2 F_2(\textcolor{blue}{s})$ | $C_1 f_1(t) \pm C_2 f_2(t)$ |
Frequency scaling | $F(c \textcolor{blue}{s})$ | $\dfrac{1}{c} f\left(\dfrac{t}{c}\right)$ |
Frequency shifting | $F(\textcolor{blue}{s}-a)$ | $e^{a t} f(t)$ |
Time shifting | $e^{-a@s}F(s)$ | $f(t-a)u(t-a)$ |
Division by $s$ | $\dfrac{F(\textcolor{blue}{s})}{\textcolor{blue}{s}}$ | $\int_{0}^{t} f(x) \,dx$ |
Partial fractions decomposition
By partial fraction we understand a fraction in which the numerator is a number (real or complex) and the denominator is a linear polynomial raised to a positive power. Partial fractions are of the form $$\frac{A}{(\textcolor{blue}{s}+a)^n}$$ where $A$ and $a$ are real or complex numbers and $n$ is a positive integer.
It turns out that all polynomial fractions in which the degree of the numerator is less than the degree of the denominator can be writtes as sum of partial fractions using the method of partial fraction decomposition.
Inverse Laplace transforms of partial fractions
$F(\textcolor{blue}{s})$ | |
---|---|
$\dfrac{1}{\textcolor{blue}{s}}$ | $1$ |
$\dfrac{1}{\textcolor{blue}{s}+a}$ | $e^{-at}$ |
$\dfrac{1}{\textcolor{blue}{s}^{n}}$ | $\dfrac{t^{n-1}}{(n-1)!}$ |
$\dfrac{1}{(\textcolor{blue}{s}+a)^{n}}$ | $\dfrac{t^{n-1} e^{-at}}{(n-1)!}$ |
Sample Solved Problems
See also
Read more
Inverse Laplace transform
Euler's formula
Pierre-Simon Laplace
Leonhard Euler