Linear Circuit Analysis


The Inverse Laplace Transform

The inverse Laplace transform is defined as $$\begin{equation}ℒ^{-1}\left[F(s)\right]=\frac{1}{2\pi j}\int_{\sigma_1-j\infty}^{\sigma_1+j\infty}F(s)e^{st} ds\end{equation}$$

Although it is possible to apply the above formula to compute the $ℒ^{-1}\left[F(s)\right]$, in electric circuits we usually compute the inverse Laplace transform using the method of partial fraction decomposition.

Properties of inverse Laplace transform
Table 1. Properties of inverse Laplace transforms.
$F(s)$ $f(t)=ℒ^{-1}\left[F(s)\right]$
Addition/subtraction$F_1(\textcolor{blue}{s}) \pm F_2(s)$ $f_1(t) \pm f_2(t)$
Linearity$C_1 F_1(\textcolor{blue}{s}) \pm C_2 F_2(\textcolor{blue}{s})$ $C_1 f_1(t) \pm C_2 f_2(t)$
Frequency scaling$F(c \textcolor{blue}{s})$ $\dfrac{1}{c} f\left(\dfrac{t}{c}\right)$
Frequency shifting$F(\textcolor{blue}{s}-a)$ $e^{a t} f(t)$
Time shifting$e^{-a@s}F(s)$ $f(t-a)u(t-a)$
Division by $s$$\dfrac{F(\textcolor{blue}{s})}{\textcolor{blue}{s}}$ $\int_{0}^{t} f(x) \,dx$
Partial fractions decomposition

By partial fraction we understand a fraction in which the numerator is a number (real or complex) and the denominator is a linear polynomial raised to a positive power. Partial fractions are of the form $$\frac{A}{(\textcolor{blue}{s}+a)^n}$$ where $A$ and $a$ are real or complex numbers and $n$ is a positive integer.

It turns out that all polynomial fractions in which the degree of the numerator is less than the degree of the denominator can be writtes as sum of partial fractions using the method of partial fraction decomposition.

Inverse Laplace transforms of partial fractions
Table 2. Inverse Laplace transforms of partial fractions.
$F(\textcolor{blue}{s})$ $f(t)=ℒ^{-1}\left[F(\textcolor{blue}{s})\right]$
$\dfrac{1}{\textcolor{blue}{s}}$$1$
$\dfrac{1}{\textcolor{blue}{s}+a}$$e^{-at}$
$\dfrac{1}{\textcolor{blue}{s}^{n}}$ $\dfrac{t^{n-1}}{(n-1)!}$
$\dfrac{1}{(\textcolor{blue}{s}+a)^{n}}$ $\dfrac{t^{n-1} e^{-at}}{(n-1)!}$
Sample Solved Problems
See also
Read more

Inverse Laplace transform
Euler's formula
Pierre-Simon Laplace
Leonhard Euler